Quantifying the evolution of individual scientific impact

Zirui Yan

Electrical, Computer, and Systems Engineering Rensselaer Polytechnic Institute

November 13, 2023

Contents

- ▶ R. Sinatra, et al. Quantifying the evolution of individual scientific impact. Science, 2016.
 - 1. How does impact involve in a career?
 - 2. Who is going to have an outstanding achievement?
 - 3. And when?

- Further experiments
 - 1. Impact of career time.
 - 2. Impact of publication field.
 - **3.** Improving the accuracy.

Publication history of two Nobel laureates

Problem

How do impact and productivity change over a scientific career?

Does impact follow predictable patterns?

Can we predict the timing of a scientist's outstanding achievement?

• Can we model scientific careers in quantitative and predictive terms?

Dataset

- American Physical Society (APS) dataset
 - journal family Physical Review
 - > 20 years of career + 10 papers + at least one paper every 5 years.
 - ▶ 500,000 papers over 110 years
 - 3000 careers
- Impact of paper: Cumulative citations over 10 years c_{10} .

Distribution of max impact and productivity

Split into 3 groups: Low/Medium/High max impact.

- More products are expected from a high max impact group.
- Number of publication $N(t) = t^{\gamma}$.

Citation varying with time

High max impact group will constantly have a higher impact.

High max impact happens randomly during the career.

Random-impact rule

- Keep the publication time and citation number.
- Reshuffle the publication index.

Random-impact rule

▶ Impact is random in a career.

► There is always hope! If you keep publishing!

The role of scientist

▶ There is systematic differences in impact between careers.

Models

Q-model: Impact of a paper *j* by scientist *i* is

$$c_{10,ij} = p_j \ Q_i$$
 . (1)
Impact of j-th paper = lucky * Q

Baseline: R-model:

$$c_{10,j} = p_j$$
, (2)

where $p_j \sim P(c_{10})$.

▶ The only factor differentiating two scientists is their overall productivity *N*.

Estimation in Q model

- The joint probability P(p, Q, N) is verified to be log-normal.
- Maximum-likelihood approach.

$$\mu = (\mu_p, \mu_Q, \mu_N) = (0.92, 0.93, 3.34)$$
(3)

$$\sum = \begin{pmatrix} \sigma_p^2 & \sigma_{p,Q} & \sigma_{p,N} \\ \sigma_{p,Q} & \sigma_Q^2 & \sigma_{Q,N} \\ \sigma_{p,N} & \sigma_{Q,N} & \sigma_N^2 \end{pmatrix}$$
(4)

$$= \begin{pmatrix} 0.93 & 0.00 & 0.00 \\ 0.00 & 0.21 & 0.09 \\ 0.00 & 0.09 & 0.33 \end{pmatrix}$$

$$\bullet \ \sigma_{p,Q} = \sigma_{p,N} = 0.$$

Goodness of model

- ▶ R-model can not capture the correlation between c_{10}^* and N.
- R-model can not capture the correlation between c^{*}₁₀ and c^{-*}₁₀, average citation exclude the most cited paper.
- Q-model is a good fit.

Number of highest citation

- ▶ Sliding widow: *Q* factor is a "constant" within career.
- Q-model capture the difference between different group.
- *p* is pure lucky!

Predicting individual Q factor

 \blacktriangleright calculate Q by maximizing the individual likelihood

Results

Who is going to have an outstanding achievement?

Lucky scientists with high Q value.

► And when?

Randomly within their career.

Further experiment

National Institutes of Health Open Citation Collection (NIH-OCC) dataset¹

- MedLine, PubMed Central (PMC), and CrossRef.
- ▶ 20 years of career + 10 papers
- ▶ 551274 careers with Publication since 1800
- ▶ Impact of paper: Average citations.

Longer history, larger dataset!

¹Hutchins, B. Ian, et al. "The NIH Open Citation Collection: A public access, broad coverage resource." PLoS Biology, 2019.

Impact of career time.

Impact of publication field.

Improving the accuracy.

► The citation number is exploding.

► Early: Last publication < 1990 v.s. Late: First publication > 1990.

Career time does impact the average citation.

► Random rule still holds.

Percentage	20%	95%
all	1.57	9.74
human	0.92	9.62
animal	0.85	9.07
molecular cellular	1.34	9.72

Table: Percentage of average citation

Field do impact the average citation.

Better to publish cross-field papers.

Correlation between career time and filed

Career time and filed are correlated.

Failure of Q-model

• We now have 4 factors: lucky (p), career year (y), filed (f) and scientist power Q.

The dataset is too large which is computational inefficient

• Correlation between career time (y) and filed (f) such that

$$\bar{c} \neq p\mu_y fQ$$
 (5)

Use neural network to predict the mean of average citation

$$\mu_{\bar{c}} = \mathsf{NN}(y, f) . \tag{6}$$

Neural network (preliminary)

- ▶ Trained three layer neural network with ReLU activation
- Q_i is average of $\bar{c}_j / NN(y_j, f_j)$
- ▶ the influence of career time

Neural network (preliminary)

▶ influence of field

Conclusion of additional experiment

Career time and publication field do impact the average citation.

Q-model is not capable for this setting.

▶ Neural network can help enhance the prediction.

Future work

Improve the prediction results of neural network.

Rescale number of citations.

Author name disambiguation.